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Multiple Scatter Cross Sections for
Anisotropic Kolmogoroff Turbulence

1. INTRODUCTION

In a recent report on backscattering from anisotropic media, oo we developed
a method for calculating muitiple scatter cross sections based on DeWolf's
cumulative forward-scatter single-backscatter approximation. 2 T ne method con-
sisted of obtaining an expression for the scattered wave in terms of the Green's
function for a wave propagating in an arbitrary random medium. From this, an
expression for the power scattered into an arbitrary direction was obtained. The
scattered power obtained from averaging over the random properties of the medium
was then expressed as the Fourier transform of a cumulant expansion of the corre-
lation functions for the random medium. To evaluate the Fourier transforms, the
cumulant series was further expanded as a functional Taylor series in terms of
the projected correlation functions (structure functions) of the medium. Fourier
transforms of products of arbitrary powers of correlation functions projected
along the incoming and scatter directions were then expressed as convolution

(Received for publication 7 February 1985)
*This report will hereinafter be referred to as "I."

1. Yukon, S.P. (1982) Backscatter From Anisotropic Random Media,
RADC-TR-82-287.

2. DeWolf, P.A. (1971) Flectromagnetic reflection from an extended turbulent
medium, Cumulative forward-scatter single-backscatter approximation,
IEEE Trans. Antennas Propag. AP 19:254.
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integrals. For Gaussian correlation functions, the required integrations could be
evaluated analytically, This calculation was carried out in I.

Many measurements of ionospheric irregularity fluctuation spectra3‘4‘ @ sup-
port some form of power law for the fluctuation spectrum and for such power law
spectra, the convolution integrals cannot, in general, be evaluated analytically.
Therefore, one cbjective of this report will be to evaluate multiple scattering
cross sections for fluctuation spectra that cannot be convolved analytically and
for the three-dimensional Kolmogoroff spectrum in particular. We will also
extend the cross section calculation in I to include scattering into forward direc-
tions and scattering from slabs containing irregularities whose symmetry axes
are oriented at an arbitrary angle with respect to the slab face.

2. CROSS SECTION FOR FORWARD SCATTERING

The only formal difference between the calculation of scattering into forward
directions and scattering into backward direction lies in changing the path length
for the scattered wave as it appears in Eq. I-45. Thus, the expression for the
backward-path length xﬁf should be replaced by the path length (L-x)ﬁf which
represents the path length from the scatter site on the plane located x units of
length from the front of the slab to the back of the slab at L.. Integrating over the
volume of the slab yields the analog of Eg. (I-46),

T

L - -
xf8. [D.(Ar)-1] + [L-x]| B, DJAr)-1
5 f des 8, [D; J + [L-x] B, Dy ]

(o]

LB, [D; (4r)-1] LB, (D, (47)-1]

e -
=[AL] (1)
: LB, [D;(4P-1] - LB, [D,(ah-1] .

3. Erukhimov, L.M., Kosolapenko, V.I., Lerner, A, M,, and Myasnikov, E. N, ,
(1982) Form of the inhomogeneity spectrum of the high-latitude ionosphere
in the direction of the geomagnetic field, Radio Phys, Quart. Electronics
24:350,

4, Kelley, M. C,, Livingston, R.C,, Rino, C.L., and Tsunoda, R.T. (1982) The
vertical wave number spectrum of topside equatorial spread F: Estimates of
ba(chcatter levels and inp lications for a unified theory, J. Geophys., Res.
B1(A7):52117.

5. Oss;akow, S. L. (1979) Ionospheric irregularities, Rev, Geophys. Space Phys.
J_.w.:521.
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To expand this as a double functional Taylor series in Di(A?) and Df(A?). we
firet define v, = LB D, 4m), ¢; = LB, and an equivalent v, ¢, with the sub-
script f replacing i. The Taylor expansion is then given by

v, - ¢ ve-¢
i i_f 7t

i _Q_ F; ) n 1 e
AL v, + v, 5 =7 (2)
[ ] -0 [ iov, f avf] nl [(vi - ci) - (vf - cf)] Vpvp =0

Exp anding the bracket using the binomial theorem yields

=Gy ~C¢
e - e o4 n 1 n!
[v] . = By J ey
(e; - cp) a=1 j=0 ™ (n-j)1j
an-i i B s TR, °f\]
. v.n-‘.i v j n-j i (3)
S A KTA Ovp \[(v; = cp=lvp=cp)] [lyvp = 0
Writing v_= Vit Ve and c_ = C; - Cp the derivative term may be rewritten as
- n-j v - ¢c
ol |o't7ct 0 ( e -1)
- n=-ij
6va avi J (v.-c_) VoVe = 0
Cd o re ‘°r]ak ALY S\
k=0 (k) av ik s vk | oy v - ¢
f f i Vi, Ve =0
)E it S P L e¥- " -1
= E=a=a=n g (=) n-itk 5
k=0  (j-k)! k! avid V.- c. |- 0. (4)
Using the result of Eq, (I-53), this may be re-expressed as
j 1 = -3 =
S ol g FRERS T i5)
k=0  (j=k)!k! (e, = et IR

A AL A oA A A A TR e s W G o= T R i e P T A e e e SRR PSS S DRIL S L A BV e N AT Al AR S TR ey R b e b e e e R e



Comparing Eqs. (3) and (5) with Eq. (I-54) shows that scattering into the forward
direction will be given by Eq. (I-54)

-B -B.L
N ol
with (6)
replacing
-(B; + By L
1-e
(7)
(B;+ B, L
and
3! -8
Y+ 1,5 (B - BL) = DA o ) Y (B~ BpIL)
k=0 (j-k)!'k!
replacing
Yo+ 1, (B + BL). €)

In calculating cross sections thus far, we have assumed that k L, >> 1
where L _ is the smaller of the inertial scale lengths (L, , L. ), and that the
cumulative forward-scatter single-backscatter (CFSB) approximation holds, This
is a good approximation for scattering into backward directions, However, for
forward directions, it is possible that double and higher order scattering with
angles larger than B¢ ° llkoLo may contribute appreciably to the cross section,
DeWolf has calculated that, for a single back scattering, the ratio of scattered
intensity outside a cone of half angle 6D to the intensity inside the cone
I(6 > 6p)/1(6 < 6p) is approximately given by (2k L sin GD/2) 5/3 . If this
ratio is still small for forward directions, the single scatter CSFB approximation
should be adequate. As an example, if we require this ratio to be no greater than
1072, this would imply, for the choices of K_ = 8, L_=2.0and = (K L)""
1,14° , that 6D = 18,1°, Thus we should be reasonably safe in pressing the CFSB
into within, say, 36° of the forward scattering direction for this choice of para-
meters.
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Comparing Eqs, (3) and (5) with Eq, (I-54) shows that scattering into the forward
direction will be given by Eq, (I-54)

-8 -BL
e fL -e !
with (6)
replacing
-(ﬂi + ﬁf) L
(7)
B+
and
L, ! -8
Y+ 1,5 (B; - BL) = P e —n rL(-l)k‘}'(n-jH.(ﬂi-ﬂf)L)
k=0 (j=k)!k!
'[(ﬁi 'ﬁf)L_I i-k (8)
replacing
Y+ 1, (8 + BpL). (9)

In calculating cross sections thus far, we have assumed that k, L >> 1
where L, is the smaller of the inertial scale lengths (L., , L, ), and that the
cumulatwe forward-scatter single-backscatter (CFSB) approximation holds., This
is a good approximation for scattering into backward directions, However, for
forward directions, it is possible that double and higher order scattering with
angles larger than § P llkoLo may contribute appreciably to the cross section,
DeWolf has calculated that, for a single back scattering, the ratio of scattered
intensity outside a cone of half angle OD to the intensity inside the cone
16 > 6p)/1(6 < 6p) is approximately given by 2k L sin GD/2) afs . If this
ratio is still small for forward directions, the single scatter CSFB approximation
should be adequate, As an example, if we require this ratio to be no greater than
10-2, this would imply, for the choices of Ko =87, Lo = 2,0 and ec = (KOLO)-1
1,14° , that OD = 18,1 , Thus we should be reasonably safe in pressing the CFSB
into within, say, 36° of the forward scattering direction for this choice of para-
meters,
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3. KOLMOGOROFF SPECTRUM OF TURBULENCE

The choice of a Gaussian spectrum of turbulence in I fnade it possible for
all convolution integrations, such as that in Eq. (I.61) to be evaluated analyti-

SR

cally. For power law spectra antd spectra having more complex functional forms,

LR it el
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numerical integration will generally be required. For these cases, a further
distinction may be made depending on whether or not the projected correlation
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functions to be convolved in the kx'ky plane can be transformed into functions
having circular symmetry. For functions that can be represented this way, the

e
3
)

cross section calculation may be structured so that the set of multiple convolu-

3 LTI,
o

fyedgety

v -
tions of the projected correlation function {Drl1 (k)} become independent of X i
and need to be calculated only once; the Xi and X £ dependence is thus transferred
to ancther, simpler part of the integration. For correlation functions that cannot
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be transformed to circular symmetry, numerical evaluation is more costly, since

v
the set of projected correlations Dr;(f{')} will, in general, depend on X ;28 well as

PR
PP

on kx and ky
Since our main concern is in studying the effects of multiple scattering from

separately.

Ty

& a0

physically realizable turbulence, we will concentrate on spectra having the power

-
3 o]
L5y

law form given by Eq. (10).

=
(]

K3

$3dk) = S, 5 (10)
[1 ik, L2+ k: Ly 2J 1+v

s LyLiTw+n
where Kg =4m (11)
reiarw-i/2)

§ sl x3d > . g 3d
is the normalization constant for ®°°(k) defined by the condition ¢~ (#=0) =1.
For such spectra, analytic evaluation is a reasonable possibility, but only

G S AERINE RERENT AL B o)

]

if V equals an integer or half integer. Fecr V, an integer or half integer the ;J
convolution integrals may be evaluated straightiorwardly by contour integration. f_\
However, even for the simplest case of V= 1, the proliferation of terms for r;:
higher order convolutions makes this a tedious procedure, For the Kolmogoroff
spectrum with V = 5/6, the convolution integrations are best carried out numer- o
ically. To accomplish this, we suggested in I representing the Kolmogoroff
spectrum as a sum of Gaussians. This allows all of the convolution integrals to be -:
evaluated analytically, yielding a new sum of Gaussians as the result. Upon try- j‘j
ing this approach, however, we found that the series converged slowly, and that _,
such a large number of terms was needed to represent the Kolmogoroff spectrum r:*
adequately that no advantage could be gained over direct numerical integration, :::
5 (2

PO
I P

]
aialals

s TR,

’
o

-

- S

% .
ot 1'[
bR

DN LTS T U NN LT

T T T Y AT T AR LT T LT LTI L L U D e L e T LT T S U L T LT T Y T orRYS B



To evaluate the convolution integrals for the cross section [Eq. (L. 54)] most
efficiently, it is advantageous, as pointed out in I, to use the delta function pro-
jection operators appearing in the projected correlation functions Ei, £ (Eq.(1.39)]
to integrate out the z components of momentum. The resulting convolution inte-
grationé are then confined to the K. ky plane. Using th:: results of the theorem
proved in I (Appendix C), all convolutions of the projected correiation function

based on Eq. (10) such as

. k- ~

(3 _ bl n-1 ,=> ->’ G ->'
D] (k) = e D™ (k-k /) D; (k*) (12)

mayv be written in the kx’ ky plane as

dk ¢
Yo 2,2 .2, _ L vpog 2 2 B 2B D
DT (k54t, k3 _f(zmz DY ((ey -k P? 2%, (k) DL, k5% (13)

where
z? = 1+n2tan2 X;), M =1Ly /L., (14)

v >
and where Di(k) is defined through the relation [Eq. (L 56)]

~ - Vo - >

D,(k) = Dy(k,) &k K, 27K, (15)
asg

Bi.)e 5ol 12 1) 929 X1

D(k,)= D.(k o K = (kg £.,Kky) =

i Iy ) o 2 i 1 G2 2 [1+kf(liL;)2+k§ L.2|.]1+” (16)
with

Koi = 4m(Ly £)LL V. (17)

The normalization constant Ko; is defined by the condition that ¢2d(;¢= 0) =1
which yields Eq. (17) when used with scale lengths L, = ‘t‘.iL_.L » Lo =L s . The
path dependent attenuation constant Oxss defined through the relation [Zq. (1. 39)],

is given by

o S eTIim e 3 W e e e WL e
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K2 §e? Kg o3
- 3 (18)
i 4002 n)tiL.L cos (Xi)

@y

In terms of dimensionless variables 5 4, = k . Ly Eg.«13) may be re~expressed as

5
1 dP,”
2,2 2 _ —3 + Yn-1,, 2,2 22 .29
2 o2e2 pd) - 12 ) oo D (Prp{ Ay P s2D,7 20y ); )
: 19

By rescaling tne Py momentum coordinate, we can rewrite Eq. (18) as a two-dimen-
sional convolution of circularly symmetric functions, Thus, with the coordinate
transformation

Pl Y Py j’i' Pz = P2 B (20)

and defining

v/ - Kzi K2i Vv - s
D.(P)* ~ = = Dy(p) (21)
[1+p2]1+Y [1+p§ +p€ 2]y
we have
Ve +
. - Dl (p.)
D'; (P,) = ——— (22)

TR e

The multiple convolution products for the scaled projected correlation function
will then be given by

-
4P

Ed (W) -3 > > b g
DY P - f DMl ( (p,- P)?) DY) (23)

(277)2

Using the results of the Appendix for convolving two circularly symmetric
functions, Eq. (23) may be written equivalently as

® 27

L0 s o o S
Di (P) = f/ Di (P +Q_L-2P Q; cos (¢Q))D(Q )QLdQ‘Ld¢§2 (24)
o O
2m)?
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2L 2  ¥n-1,.2% 3. -2
g f =gt 97 @+p’  Bl@iBd? aa?2
; 2
Tent S, Jat.qer? [@p? @12 [gh@-pR) 12 (s)

or

" QAQ! 4Q+@ - P)
. f onf——2 1@ B, @) ———— 26)
() o (2m A

where AQ+Q*-P) = 1ifQ, Q’, and P form the sides of a triangle of area A
and zero otherwise.

By making the coordinate transformation given by Eq. ¢20), integration of
a general term such as Eq, (I-60) can be re-expressed as

22 ~ » <> = -+ > oD -)‘
dk_ dir D @)<selli-k - K, +K,) >DI(K) @)
[ i i f f
(2m 1
ff}f dpldpqu——ldqz bn i(p, <8 €2(p- +§ ;<)>DJ( 0 p. oK
p € (p-gq-K. .+ q o
Lotem? i £ tlp, - AL
iz
> -+
oKf
Ce e
%R

un-j > J >
dp, dP,d@, d@, D I(®,) B, @Q,)

- S

4 4 n-j-1 j=1, 2\n=2
Zi !'f (L.)5@Rm !'i !'f (L3)

2. Py 9, e
<6€ (zl le _z-;l Qzl Ki' Kf)>‘

The X, ; and Xe dependence of the integrand has thus been transferred from
the arguments of D“ i and D:l , where it appeared in the form of the scale factors
L5 and £, to the term <6€2>. The factors 2 o ;,f'] L.LG will be Sa_ncelled
when account is taken of the terms X ’21 i K2]f appearing in D“ =i . Dg .

For spectral correlation functions that do not lead to circular symmetry in
the scaled kx-k plane after integration over the kz projection delta function,
such as the factored ¢KG of Eq. (I.30) below:

e, 5 SR Ty Gt Wode S Ty Ly Y P L R R T
A .h AT, DR -‘..-‘.-‘*'“"u"”“'-4,:“- R R A A R N T
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-2, 13 /4 Ky

d. (k) = Ly 3 . (28)
KG Jr Lae [1+x21,211%Y

WV
“each D? (pl, p2) will be a function of Xi and of Py and py Separately. While the

time required to evaluate a look-up table of values for the non-circularly symmet-
ric Bi (pl, pz) functions is roughly equal to that required for the symmetric ones,
the storage require\zgents will be much larger since the circularly symmetric
structure functions D'i1 (P) depend only on one variable P = [P% + P% j1/2
(aside from the easily factored dependence on Xi stemming from Kzni ).

In the following sections, we shall discuss the results of numerically evaluating
the multiscatter cross section for ¢ given by Eq. (10). We have omitted the
evaluation of multiscatter cross sections using the mixed representation Eq. (28)
simply as a matter of economy. If we neglect multiscatter contributions, however,
the attenuated Born cross sections for the Gaussian [Eq. (I. 29)]. Kolomogoroff
[ Eq. (10)), and mixed [Eq. (28)] spectral correlation functions can be readily
compared and are shown in Figure 1 for transverse and longitudinal scale
lengths of L, = I, Lt = 4 and wavelength A = 1 for X; = 45° . At the angle for
specular backscattering Xy = 135°, we have AKz = 0., Thus, the magnitude of
the backscattering peak will be controlled by the magnitude of AK1 * L. and the
overall Rayleigh @n/r)? factor. A change in wavelength from A=1to A= 1/2
will entail au approximate 2% orders of magnitude decrease in the Gmussian cross
section, whereas the two Kolomogoroff cross sections are virtually unchanged
due to the K Rayleigh prefactor increase balancing the (1+4 szL LE) 1+5/6
denominator increase, In the forward direction, both AKZ and AKj are zero,
and the peak cross section values are determined by the Rayleigh K4 behaviar.

4. SLAB GEOMETRY

In I, the symmetry axis of the irregularities was chosen to be parallel to the
face of the slab. It is a straightforward matter to modify the cross section calcu-
lation to account for a geometry having the irregularities aligned at an arbitrary
angle with respect to the face of the slab,

For the general case shown in Figure 2, we start from the situation of a
horizontal slab with irregularities aligned perpendicular to the slab face and then
define a tilt angle a that defines the rotation of the symmetry axis of the irregu-
larities in the xz plane away from the z axis, and a rotation angle S8 that defines
the rotation of the projection of the irregularity in the xy plane clockwise from the

R T T A e DT L U ey T T e
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x axis. The path length factor si(x) will now be replaced by :
z

s'i(z) = == (29)

| cos(6)| ;

with z measuring distance into the slab, The path~dependent attenuation and the
scattering cross section can now be found by expressing the wave vector components %:
*In ], the angle X in Figure Al was mislabeled. It should be the angle ACD P
yielding an expression for the path length Eq. (I.43) s(x)=x/ |cos(¢)sin( X )|= =

AC, (This will not entail a change in the numerically computed curves in I Y

as ¢i‘f was taken to be 0 or 7 for all cases). 5
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parallel (KS) and perpendicular (K 1, 2) io the irregularities in terms of two coor-
dinate rotations through angles © and B.

Thus we have

= Ql‘ cos & + Qa‘ gin o

Ky =Qy
Kg = -Q “sin@ +Qqg°cos & (30)
with

Q" = Q, cos B - Q’ sin 8

Q" =Q, sin B +Qy cos B

where {Qx. Qy’ Qz} = {K sin (@) cos (Y), K sin (8) sin (¥), K cos (8)} are the
components of the wave vector with respect tc the slab with rotated irregularities,
and {KI. K, I_ES} = +{K sin (X) cos (¢), K sin (X) sin (@), K cos (X)} are the
components of Q or Qf with respect to the irregularity. The steps required to
determine 07 Qle (o, 8) for the general case of scattering from a horizontal slab

with rotated l.rregularltles are: (1) for given Q and Qf use Eq. (30) to find the
corresponding K and Kf, (2) use the results of Eq. (I.40) to find &y, [Q ]
and aXf [Qf] (3) according to whether Q and Qf are on opposite sides or the
same side of the slab, use [along with 5.1 for s'; ¢ (z)] Eqs. (6) and (8) or Egs,
(7) and (9) for the attenuation and ¥ factors; (4) determine

%, &, @B " ’lq] & [a,) Ox, 1[4 11 719y, (] e

As an example of the effect of rotating the irregularity axis on the multiple
scattering cross section, we take S = 0 and evaluate ¢ ‘3? af for various values
of & for the Kolmogoroff spectrum. Assuming that initial and final wave vector

are confined to the @ = 0 (x-z) plane, we may redefine the ranges of XL £ and
ei,f to extend to 27,

In this plane, we then have the relation

12




Xi=°'+oi (32)

and
Xp=a+ ¢

as shown in Figure 3.
For specular scattering - Xi = )(f - m and from Eq. (32), this implies

Gf =20 - 6 ;- (33)
For 9:’. = 45° and for values of a = 0°, 30°, 60° and 90°, this yields expected
outgoing angles for spectral scattering of Of = 315°, 255°, 195°, and 135°
respectively.

INNNANANANNNEN

Figure 3. Geometry of Scattering Angles With Respect to a
Fixed Slab With Rotated Irregularity Axes for 8= 0
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In Figure 4, we have plotted the total cross section 05? ac( @, B =0) vs 6,
Py

for values of o = 0°, 30°, 60°, and 90® for a slab with .=1, n =Lu/L, =4
with K = 47 for Kolmogoroff turbulence., The spectral peaks appear close to their
expected values. While there will be narrow ranges near Of = 90° and 270° where
the cross section will vanish due to attenuation in an effectively infinite slab, the

decrease in 06 5 5 for the ranges of approximately = 10°on either side of
i f

i
these grazing angles does not show up., This is caused by a near cancellation

between the attenuation of the Born term and the added contribution of multiscatter
terms with n > 1 as can be geen in Figure 5 where the two contributions are
plotted separately.

; .".“"?:"r;," L e

PRl

e T,

L

5. NUMERICAL RESULTS FOR MULTISCATTER CROSS SECTIONS

*
s

T g g
v P

In this section, we present numerical results of multiple scattering cross

sections as a function of the polar angle X £ for various values of 77 = E'—, L,

Ly
¥, and X i These results extend the calculations of I to forward directions as

L g
a

r9cs

Sp-sigt)

discussed in Section 2 and to the case of the Kolmogoroff spectrum as discussed

o g
W
L,

in Section 3. For all cases considered, we assume scattering from a slab of
irregularities with the long axis of the irregularities parallel to the slab face
(o =90° B =0), Inkeeping with the angle designations of I, we shail plot cross
sections vs X £e For purposes of displaying results, we define X gto be negative
in the forward direction, X = -]Xflfor @ = 0.

In Figures 6 and 7, the logarithm of the total scattering cross section ¢ Xi* Xp
is plotted vs y ¢ for the Kolmogoroff and Gaussian spectral functions

¥
‘'

N

respectively., Inthe forward direction, the Kolmogoroff cross section is seen to
satisfy the requirements of the forward scatter approximation better than the
Gaussian in that the cross section falls off much more rapidly as | x; - x il
increases. Around the specular backscattering peak, it is the Gaussian cross
section that falls off most rapidly as a function of y £ This behavior can be readily
understood in terms of the derivatives of the corresponding spectral functions.

£ e

{’.' '.A"l, 8.2 _‘

+

DA R
Syt

I)
_6Xf in ¢G = -L;.{AKL cos (Xf) cos (¢i-¢_f) LE - AK, sin (Xf) Luz} (34)

LAIENREN

—5‘-95(-; tng = - _K {AK,L cos (X,) cos (é,-¢) LY - AKu sin (x,) an}
(1+p) {1 +AK..2.LE + AKHZ Lllz}

(35)

.
S Tt

.
)

In the forward direction, AK, is small, AKy = 0, and the slope of the

o
)

T
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Kolmogoroff curve is approximately four times that of the Gaussian

d = el

The factor in brackets in the numerators of Eqs. (34) and (35) can be rewritten for
the backscattering case (¢i =0, ¢ ¢ =) as

[AK, cos(xf)Lz_,_ - 4Ky sin( x;) L?,] (37)

= -2K sin <Xi +X;Yeos {Xi = Xf'> cos()(f)LZ‘L - sin (Xi - xf> sin( y )L o8
2 L g 2

For Lu2 >> L*z. this term will have two zerus, one near Xg = 0 and one near the
specular direction Xf =Xi

As 7 isreduced, the peak near the specular direction will move in to lower
X while tue minimum at y , = 0 will move out. At some value of 7(8 < 77 < 16
for the examples shown), the peak and minimum will merge and disappear. This
behavior can be seen for both the Kolmogoroff and Gaussian spectra. Inthe case
of the Kolmogoroff spectrum, the extra term in the denominator of Eq. (35)
implies that the slope of 1n 0% will be smaller than that for In oG by 2(1+w)/[1 +
A2 12 + Ak)12L1? ] which is approximately 2(1+5/6)/[1 + 2K°] ~ 1/14 for the
parameters of Figure 6.

The equal spacing in the values of the amplitudes at the scattering peaks in
Figures 6 and 7 reflects the multiplicative factor L in the uiormalization constants
for ¢G and q‘bK . Since the increments in L | in Figures 6 and 7 proceed by fac-
tors of 2, the increments in oy and °: at their peaks will be additive in incre -
ments of log 2.

In Figures 8 and 9, we have plotted the multiple scattering cross sections for
the Gaussian and Kolmogoroff spectra for increasing values of K. Fer the
Gaussian case shown in Figure 8, we have plotted the total cross section for L=1,

N =4, and for K taking values of 1.5, 27, 2.57, 37, and 3.5 . At the
position of the forward peak, since the scattering slab is relatively thin and

Aﬁ = 0, the K dependence of the scattering'cross section is determined by the
Rayleigh K4 factor, At the backscatter peak, as pointed out in 1, the cross section
is dominated by the exponential factor _-(AK3 L2 + AKX} L{)/4.  Thus for
K = 3.5 the value of the Born contribution to the backscatter peak is 0.17 x 10~
while the multiscatter contribution there is U.18 x 10-22. Because the CFSB
approximation depends on satisfying KL, >> 1, the Gaussian spectrum offers little
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of interest in the region of specular scattering. The backscatter cross section
there for large KL is practically zero.

In Figure 9, we have plotted the total cross section for scattering from
Kolmogoroff turbulence with 7 =4, L = 10, and for K values of 4 7, 6 7,8 m,
and 1077, For these values of K and L, the forward approximation is adequately
satisfied, In the forward direction, the scattering peak is determinedby the
Rayleigh K4 factor modified by attenuation because L.=10 represents a relatively
thick scattering slab, At the specular peak near X s ™ 40°, the value of Ok is seen
to change by a relatively small amount as a function of K, For the Born contri-
bution this behavior is caused mainly by K%/ [1+ Ak? 1.3} *+5/€6 . g1/8
as K increases (modified by attenuation e %L with axk ). The multiscatter
contribution increases roughly as o, and, for K = 10 7, can begin to dominate
the Born contribution. This is shown in Figures 10 and 11'where we have plotted
the Born and multiseatter contributions for K = 10 7 andK =4 7 .

It should be pointed out that the CFSB approximation is also limited to domains
where 0L < 7 /2. Since the average phase variance is'givén by < ¢ 2 >=
oL gs , the point oL e = /2 maérks the beginning of the diffusion regime where
transport theory must be employed.~ This boundary will always be crogsed for
scattering at near grazing angles to the slab, since the effective path length L, off
~wfor y =0 [0, = 7r'/2] . AsK increases, this domain is bounded by

t4°, %9°, %14° and +20°forK =44, 6 w, 8 7r, and 107 respectively
for the Kolmogoroff cross sections of Figures 9, 10, and 11,

In Figures 12, 13, and 14 we have plotted the attenuated Born and multiple
scattering contributions for the Kolmogoroff spectrum for 7 =4, K =8 7, and
for L= 0.1, 1, and 10, For the thin slab case of Figure 12, the multiscatter
contribution is less than 1 percent of the total except in the region around the
grazing angle at x o 0° ., Here the Born term decreases because of the attenua-
tion factor given by Eq. (8) or (7), while the multiscatter term increases due to
the increased effective path length, For the medium thick slab of Figure 13, this
behavior persists, except that very near Xg = 0°, attenuation begins to dominate
the multiscatter term. For the thick slab case of Figure 14, the multiscatter term
is comparable to the attenuated Born term, and the domain where attenuation
dominates the multiscatter term near ;= 0° has increased. The angular domains
where diffusion scattering is appropriate are given by (<2° , +2 °) for the case
L =1, and (-15°, +15°) for the case L = 10,

The dependence of the total multiple scattering cross section on y ¢ is shown
in Figure 15 for the case 77 =4, LL =1, K = 2w for incident angles of Xi: = 15°,
45°, 75°, and 85°., A feature to be observed for the X i dependence, as pointed
out in I, is that the curves peaked around smaller values of | X £ | are broader
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since we have plotted with an abscissa proportional to d X rather than

dK, = sin( X )' K- dx Thus, increments of X . near X = 0 yield smaller
z f

changes in dK £, and therefore broader peaks, The observed decrease in the
magnitude of the peak in the specular backscatter direction where AKy. =0, is
governed by the factor 1/ [1 + AKJ_ Li] W [1+ ax? gin? 0 L, Hjpe
which decreases with increasing @ i

.

6. SUMMARY

We have presented a method for calculating multiple scattering cross’ sectmns
from slabs of arbitrary depth containing a homogeneous distribution of refractwe
index irregularities. The irregularities are assumed to be aligned along a sym- '
metry axis at a given angle to the slab face and to possess different correlation
lengths along and perpendicular to this axis. '

Previous calculations that have been carried out for multiple scattering cross

sections have been limited to isotropic turbulence having a Gaussian power spect~
rum and to direct backscattering. The extension to anisotropic Kolmogoroff
spectra and scattering at arbitrary angles thus presents a result that corresponds
to the general situation encountered in scattering hf waves from iohOSpheric
irregularities,

For correlation functions that depend on a single radial argument -

R =Y [(x? + xg s ® ok xg Ly 2] , projections along a given direetion in the
medium can be changed by a scale transformation to circularly symmetric form.
Numerical evaluation of multiple scattering cross sections for turbulent spectra
represented by such correlation functions can then be carried out relatively simply
and were evaluated for an anisotropic Kolmogoroff spectrum.

Measurements of ionospheric turbulence spectras‘ 43 tend to indicate a power
law spectrum k4 with g =~ 2-4, Erukhimov et al® further indicate that the
factored spectral form of Eq. (28) is supported by their data.

We have noted that the loss of circular symmetry in the plane of the projected
correlation function for spectral forms iike Eq. (28) requires more extensive
numerical calculation because the results of each convolution must be stored as an
NxN array rather than as an Nx1 array. If, however, the initial and final scatter-
ing angles are such that tan X T S>> 2(L, /Ln )» the projected correlation
function

29

pl, 3 Yal *
.w 1.‘..0'. S &,'



5 p -&? tan?(x)Ln 2/4
DX (k) = « €
2}1+v
XL

"
[1+x,°L

can be approximated by
W K o -k? tanz(X)Lll 2/4
DX k) & e
[1+k,%L, 231V

and the two-dimensional convolution integrale factor into two one-dimensional
convolution mtegrals of which the Gaussian part can be evaluated analytically.
Using Erukhimov's® values of L ~ 0.5kmand Ln ~ 10.0km the above
analysis indicates that for X i > ~ 20° the simpler one-dimensional convolu-

tion calculation should be adequate and would constitute an-upper bound to the full
numerical calculation of multiple scattering contributions. - . ‘
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Appendix A

To show the equivalence of Eqs. (20), (21), and (2'2). we étart from the
expression for the two-dimensional convolution of 2 arbitrary two-dimensional
furjctigns g(xl. x2). f(xl.xz) whose two-dimensional Fourier transforms
g(p), flp) exist.

> > > > _
k) = f XX g(x) glx) dx (A1)
0 _.->'-> _.-> e _.-> ->~—'>. dq dp. g
1 I I PV )
@ )2 f é (k~q-p)f{q)g(p)dq dp (A3)
- /—iLZ- Ha)gk-a). (a4)
2m)

For functions f(p) and F(p) that depend only on the magnitude of B, this may be
written as

o 2T
~ qdq ot DR
ak) =f—-——2 f d¢ f(qz) g(k2-2kq cos(P) + qz). (A5)
@mw) o

Going back to Eq. (A2), we may re-express this as
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> i 2w
dk) = féffpdp pdpadq fgf d¢  d¢ dé

kP cos(¢k- #) ,-igpcos( ¢q - ¢) -ipp cos(tl’p - )

Tlq) gtp) /(27r)4 (46)
5 fpdp ff pdpadd (5 3 5 olap I (pp ), (kp ) fah ged @an
o (0 :

Integrating the Bessel functions over p, this may be written as

fpd
~ p Jadg
dk) = ---—i’--—- @) sp?) 4 ra-k (A8)
@m )2 d
where A(p+ q - k) = 1if p, q,k form the sides of a triangle of area A and
P q
(A9)
k
zero otherwise. Expressing the area of the triangle as A = s(s-k}s-p)(s-q)
where s = k+p+q, this may be re-expressed as
>
- Lpdp Jada Ta®) §0? Ap+a-k)
| dk) = ——m2 (A10)
@) [s(s-k)(s-p)s-q)]
[p+k|
f EE f 47 ©2) g(a?) - @a11)
|-kl o212 2o a1

To show the equivalence of this expression with Eq. (A5) in another way, we
let z=q2. a= (p-k)z. b = (p+k)2, and re-express Eq. {A11) as
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© z=b

furss 1 f : ~ 2. dz g(z)
d(k) ="‘(2 )2 ; pdp £(p°) 2 m (A12)
Z=a

Changing variablegto z = btz + (b-a) x yields
2 2

x=1

d(k) = enr )2 f pdp f(pz) xé]-l \/;:;-2— g (pz "kz + 2pkx). (A13)
o

Letting x = cos ¢ then gives

d(k}‘(gn)z fpdpf(p)f d¢ £ +k% - 2pk cos ¢ )
(A14)

*
1

“@en)? f ap. B EE-B?)

which is Eq.(A5).
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